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Abstract: The direct perturbing influence of the nuclear magnetic and electric

multipole hyperfine interactions upon the amplitude of the f$ f electric dipole tran-

sitions is analyzed. In this approach, the role of the forcing mechanism is played by

an interaction other than the crystal field potential, which is the origin of all existing

theoretical models. In particular, new effective operators of the second order that

result from the electric dipole hyperfine interactions and compete with the standard

Judd–Ofelt terms are introduced. In addition, the tensorial structure of the third-

order effective operators that contribute to the transition amplitude is discussed, and

attention is directed to the possibility and necessity of the introduction of a new para-

meterization scheme of f-spectra that would be applicable for the description of the

hypersensitivity and such transitions that are highly forbidden by the standard

selection rules.
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INTRODUCTION

In 1962, Wybourne[1] suggested that the highly forbidden electric dipole f$ f

transitions in crystals might become possible as a result of hyperfine inter-

actions. It took more than 20 years to verify this hypothesis when Popova

with her collaborators observed the effects of the interaction of the nuclear

magnetic dipole and electric quadrupole moments in the case of the lantha-

nides in crystals.[2 – 8]

The problem to describe these subtle properties of the atomic structure of

the lanthanides is as difficult and complex as the Hamiltonian, which, in a

symbolic way, consists of several terms

H ¼ H0 þ Hcorr þ Hso þ HCF þ Hhfs þ HEM þ . . . ;

where H0 denotes the part of interactions that is described within the central

field potential approximation (in practice usually chosen as the Hartree–Fock

model). The remaining symbols represent interactions that are possibly the

most important in the description of any many electron system, namely

The noncentral part of Coulomb interaction that is responsible for the electron

correlation effects,

Spin-orbit interaction,

The crystal field potential that represents the electrostatic interactions between

the lanthanide ion and its environment,

Nuclear magnetic hyperfine interactions,

Electric multipole hyperfine interactions.

The ellipsis in Eq. (1) denotes that the presented list is not complete, and

other mechanisms may be also important for better understanding of the f$ f

transitions.

In order to include various physical interactions in the theoretical descrip-

tion of a system, the standard procedure requires diagonalization of the matrix

of all elements of the Hamiltonian that are evaluated with the basis functions,

starting with those obtained for H0. In order to make the calculations possible

in practice, very often the radial integrals of the matrix elements are treated as

adjustable parameters while only the angular parts are evaluated directly. This

type of calculations was performed by Wells et al. in the analysis of Zeeman

and hyperfine infrared spectra of Pr3þ ion in the hosts of C4v symmetry.[9] The

same procedure has been recently applied by Guillot-Noël et al.[10] to analyze

magnetic interactions in the lanthanides in the Y3Al5O12. As a result of such a

procedure, the optimal values of the energy and the functions associated with

each energy state are obtained.

The physical reality of each system predicts the order in which the

operators in H above should be included in the calculations. At the same

time, the kind of interactions included in the calculations defines the coupling
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scheme in which the wave functions are constructed. This is a consequence of

the fact that each distinct term added to the Hamiltonian changes its commuta-

tion relations with the symmetry operations. Similarly as it is in the case of the

spherical symmetry of free atoms, whose Hamiltonian has to commute with the

angular momentum operators that are the generators of the rotational symmetry.

This requirement must be satisfied at each point of analysis, and as a conse-

quence the energy levels are described by the symmetry adapted wave

functions. This means that for any many-electron system, the wave function

has to be not only antisymmetric, but its symmetry is also defined by the trans-

formation properties under the symmetry operations.

In all cases, when the wave functions of the energy states are known, it is

possible to describe the properties of a system, because they are determined by

expectation values of appropriate operators. It should be realized however,

that such a theoretical description of the properties of a system is precise

within the accuracy of the energy calculations. However, a question arises

whether the accuracy of the energy calculations is good enough also for evalu-

ation of the transition amplitude, for example. It is well-known, and very well

numerically documented, that double-excited configurations play a dominant

role in the description of the energy when the model is extended beyond the

single configuration approximations and the interactions between various

excitations are included via CI (configuration interaction), MCHF (multi con-

figuration Hartee–Fock), or MBPT (many body perturbation theory) methods.

At the same time, the results of numerical analysis of spectroscopic properties

of the lanthanides in crystals demonstrated that the major contributions to the

transition amplitude originate from the perturbing influence of single excited

configurations while the doubly excitations are negligible.

It is possible to approach the theoretical description of the properties of a

system from a different perspective and modify the functions by such aspects

(components) that are possibly unimportant for the energy evaluation but are

crucial for the spectroscopic properties. This approach is applied in the current

investigation, which is devoted to the electric dipole f$ f transitions and to

their new physical origin, which is attributed to the hyperfine interactions.

THEORETICAL BACKGROUND

Although the electronic structure of the lanthanides is complex, due to its special

properties, it is possible to regard the additional terms in the Hamiltonian

presented above as perturbations. Furthermore, instead of the parts of physical

interactions that contribute to the energy (and therefore their impact is

included in the wave functions obtained from the energy criterion), it is

possible to take into account those components that affect directly the f$ f tran-

sition amplitude. This means that the functions that are the solutions of the zero-

order eigenvalue problem are improved by the corrections representing a part of

particular physical mechanism, which does not contribute to the energy, but

Hyperfine-Induced f$ f Transitions 295

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
5
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



modifies the transition amplitude. In order to avoid the potential danger of

including the same physical effect twice, it is important to partition the whole

space spanned by the solutions obtained for H0.

The Hamiltonian for which the perturbation approach is applied here has

the following form

H ¼ H0 þ l1Vcorr þ l2Vso þ l3VCF þ l4Vhfs þ l5VEM; ð1Þ

where each perturbation (note the change of symbols and the presence of the

perturbation parameters) is limited to the intershell interactions. This means

that if the states of the 4f N configuration span the subspace P, the

remaining part, Q, is associated with the states of all excited configurations,

and each perturbation is built of two terms, V ; PVQþQVP. The presence

of P and Q in each perturbing operator limits the interactions via V to those

between the ground and excited configurations (while PVP possibly contribute

to the energy).

In the case of the description of electric dipole f$ f transitions, the crystal

field potential, VCF, plays a crucial role. The solutions of the zero-order Hamil-

tonian defined within the free ionic system approximation are of the same parity,

and therefore the transitions between such energy levels are parity forbidden.

The odd part of VCF ; P VCFQþQ VCFP, which does not contribute to

the energy within the single configuration approximation, admixes to the

functions of the 4f N configuration components of opposite parity. In this

sense, the crystal field potential is the forcing mechanism of electric dipole tran-

sitions, which actually result from the breaking of the spherical symmetry of the

lanthanide ion assumed at the zero-order level of the calculations. These correc-

tions to the wave functions determine the second-order contributions to the tran-

sition amplitude. They define the basic concept of the Judd–Ofelt theory,[11,12]

which is the origin of all theoretical models of f-electron spectra, including the

effectively relativistic approach.[13,14]

The energy of a many electron system is sensitive to the electron corre-

lation effects that are described by the noncentral part of the Coulomb inter-

action. Therefore, the results of the calculations performed within the central

field approximation have to be corrected by the impact due to these effects.

The same sensitivity is observed in the case of the transition amplitude that

is evaluated within the Judd–Ofelt theory, which is in fact based on the

single configuration approximation. In this particular case, the perturbing

influence of the electron correlation effects upon the transition amplitude has

to be taken into account together with the crystal field potential. The double

perturbation approach formulated for such a Hamiltonian results in third-

order contributions to the transition amplitude. All aspects of this model

have been analyzed in detail previously.[15] The main conclusions derived

from the results of the ab initio–type numerical analysis performed for ions

across the lanthanide series have demonstrated that electron correlation

effects have to be taken into account in any reliable theoretical model of
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direct calculations of the transition amplitude. Although the selection rules

remain the same as for the second-order Judd—Ofelt theory, the third-order

electron correlation contributions are at least of the same magnitude, and for

some cases even greater, as the standard second order ones.

The analysis devoted to the importance of the spin-orbit interactions began

in 1982 with a paper by Judd and Pooler[16] devoted to the amplitude of the two

photon f$ f transitions. This aspect of the f$ f transition theory was also

addressed by Downer and Burdick,[17,18] discussed in the terms of the

perturbed functions approach in Ref. 19, and finally analyzed within the effec-

tively relativistic approach to the description of electric dipole transitions.[13,14]

Two remaining perturbing operators in Eq. (1), Vhfs and VEM, are new and

their influence upon the transition amplitude is the main subject of the current

analysis. The investigation presented here provides the answer to the search

for such contributions to the amplitude that relax the strict selection rules of

all the previous formulations and make a theoretical description of the

unusual transitions possible. This analysis concerns not so strongly the possi-

bility of the direct evaluation of the transition amplitude but is rather devoted

to the formulation of a new parameterization scheme of f-spectra that is appli-

cable also to unusual transitions as, for example, 0$ 0 and 0$ 1 observed in

Eu3þ in various materials.

PERTURBATION APPROACH

In this particular application, the analysis of the hyperfine interactions upon

the transition amplitude is based on double perturbation theory defined for

the Hamiltonian, which contains two perturbing operators,

H ¼ H0 þ lðPVCFQþ QVCFPÞ þ mðPVQþ QVPÞ; ð2Þ

where P, as above, is spanned by the eigenfunctions of H0 obtained for the

electron configuration 4f N, Q ¼ 1 2 P, and it is associated with the singly

excited configurations 4f N21n0‘0 (all the operators regarded here are single

particle objects, and therefore the doubly excited configurations do not con-

tribute). The crystal field potential is defined in the terms of spherical

tensors as follows,

VCF ¼
X
tp

Bt
p

X
i

rtiC
ðtÞ
p ðqiwiÞ; ð3Þ

with structural parameters (crystal field parameters) Bp
t . The second pertur-

bation V denotes either the nuclear magnetic hyperfine interaction, Vhfs, or

the electric hyperfine multipole interactions, VEM.

The perturbing operators in Eq. (2) represent the intershell interactions,

because only the matrix elements between the functions belonging to P

and Q are nonzero. Limiting the expansion of the wave functions to the
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first-order corrections in both perturbations, the transition amplitude defined

up to the third-order consists of the following additive terms

G ¼ l C0
f jD
ð1Þ
r jC

10
i

D E
þ C10

f jD
ð1Þ
r jC

0
i

D En o
þ m C0

f jD
ð1Þ
r jC

01
i

D En

þ C01
f jD

ð1Þ
r jC

0
i

D Eo
þ lm C10

f jD
ð1Þ
r jC

01
i

D E
þ C01

f jD
ð1Þ
r jC

10
i

D En o
; ð4Þ

where Dr
(1) is the electric dipole radiation operator, and it is defined by a

spherical tensor in the following way

Dð1Þr ¼
X
i

riC
ð1Þ
r ðqiwiÞ: ð5Þ

The third-order contributions that originate from the perturbing operators

QVCFQ and QVQ, and which consequently are determined by the matrix

elements of the type kC11
jDr

(1)
jC0l, are not included in Eq. (4). The discussion

here is devoted mainly to the intershell terms that form the basic concept of the

standard Judd–Ofelt theory. Indeed, here the aim of the perturbation approach

is also to admix new components to the wave functions of the ground configur-

ation via a certain physical mechanism. The particular contributions that are

omitted in Eq. (4), those generated by C11, as seen in the above matrix

element, describe the interactions within the space associated with the

excited configurations. They obviously improve the description of the states

of the excited configurations, but this aspect is not of primary interest in the

current discussion. However, for the completeness of the presentation, their

tensorial structure is also introduced at the end of this paper.

In order to evaluate the second- and third-order contributions to the tran-

sition amplitude listed in Eq. (4), the first-order corrections to the wave

functions have to be constructed. The procedure is standard for the

Rayleigh–Schrödinger perturbation theory. The first-order corrections that

originate from crystal field potential VCF are defined as linear combinations

of zero order functions,

C
ð10Þ
i ¼

X 0

k=i

D
C0

k jQVcrystPjC
0
i

E
E0
i � E0

k

C0
k : ð6Þ

The terms associated with the perturbing parameter l in Eq. (4) are the con-

tributions to the transition amplitude of the second order, and they originate

from the perturbing influence of the crystal field potential. They are deter-

mined by the matrix elements with the corrections defined in Eq. (6), and

they define the standard Judd–Ofelt theory of f$ f electric dipole transitions.

From the whole expansion of the crystal field potential in Eq. (3), only the

interactions via its odd part are effective in forcing the electric dipole tran-

sitions. When, following Judd and Ofelt, it is assumed that the energy levels

of distinct configurations might be regarded as degenerate in relation to the

large energy distance between the ground configuration 4f N and all the
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excited ones, it is possible to perform the partial closure and derive the

transition amplitude in its effective operator form

GJ�O ¼ 2
Xodd
t;p

Bt
p

Xeven
lm

Xeven
‘0

ð�1Þq½l�1=2 t 1 l

p r �m

� �
Al
t ð‘
0ÞRt

JOð‘
0Þ

4f NC0
f jU
ðlÞ
m j4f

NC0
i

D E
; ð7Þ

where the angular term is defined as

Al
t ð‘
0Þ ¼ ½l�1=2 t l 1

f ‘0 f

� � D
fkCð1Þk‘0

ED
‘0kCðtÞkf

E
; ð8Þ

and the radial integrals are expressed in the terms of the perturbed functions[20]

in the following way

Rt
JOð‘

0Þ ¼

D
@tð4f �! ‘0Þjrj4f

E
; ð9Þ

where j4f l ; P4f and @t(4f! ‘0) ; @t(r; 4f! ‘0).
Note that due to the perturbed function approach, the sum of the original

Judd–Ofelt radial integrals over the complete radial basis sets of one electron

excited functions of ‘0 symmetry is replaced by a single integral with new

functions that contain this very troublesome summation inside their definition

(see Ref. 20). The Judd–Ofelt effective operators are presented here because

they define the background for all comparisons and form the language for

investigations that are devoted to the selection rules and parametrization

schemes of f-spectra.

The second-order contributions to the transition amplitude that are pro-

portional to the perturbing parameter m are determined by the first-order

corrections C01, which are due to the perturbation V. Furthermore, these

contributions do not vanish only if C01 is of an opposite parity to the

parity of C0. Indeed, this particular first-order correction to the wave

function is defined by an analog of Eq. (6) with the crystal field potential

replaced by V. This implies that the perturbation V from Eq. (2) has to

have nonvanishing matrix elements with the functions of the opposite

parities. From among both perturbing operators, Vhfs and VEM, this parity

condition is satisfied only for the odd part of the electric multipole

hyperfine interactions. Thus, for the first time in the theory of f$ f tran-

sitions in crystals there are nonzero second-order contributions that are of

a new origin and which compete at the same order of analysis with the

standard Judd–Ofelt terms. These new terms originate from the electric

dipole hyperfine interactions. At the same time their presence indicates

that there are nonzero contributions to the amplitude of parity forbidden

electric dipole transitions in the case of free atomic/ionic systems. In this

particular case, it is concluded that such transitions originate from the dis-

tortion of the spherical symmetry of the nucleus that is perturbed by the
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surrounding electrons. Thus the interactions via VEM represent the

mechanism that forces the electric dipole f$ f transitions in spherical

systems and also those of lower symmetry.

The terms in Eq. (4) that are proportional to lm are of the third order, and

in general they consist of two triple products of the matrix elements that differ

from each other by the order of appropriate operators, namely

3GV ðinterÞ ¼
X
Xx

X
Yy

�
C0

f jPVQjYy

��
YyjDð1Þr jXx

��
XxjQVCFPjC

0
i

�

ðE0
i � E0

XxÞðE
0
f � E0

YyÞ

8>><
>>:

þ

�
C0

f jPVCFQjXx

��
XxjDð1Þr jYy

��
YyjQVPjC0

i

�

ðE0
f � E0

XxÞðE
0
i � E0

YyÞ

9>>=
>>;
; ð10Þ

where, as mentioned above, following the concept of the standard Judd–Ofelt

theory, the crystal field potential still plays a special, but no longer unique, role

of a mechanism which forces the electric dipole f$ f transitions.

NUCLEAR MAGNETIC HYPERFINE INTERACTIONS

The interaction between the nuclear magnetic moment and the magnetic field

generated at the nucleus by each electron in an open shell of a symmetry other

than s is represented by the operator

Vhfs ¼ Ar
�3ðLð1Þ �

ffiffiffiffiffi
15
p D

‘kCð2Þk‘0
E
W ð12Þ1ðs‘; s‘0ÞÞ � Ið1Þ; ð11Þ

where the numerical factor contains

A ¼ 2bbNgI ð12Þ

and W (12)1 is the double tensor operator with an even rank in the orbital part. In

the analysis presented here, the wave functions of the 4f N are expressed in the

intermediate coupling scheme, and with the angular nuclear momenta

uncoupled. As a result the matrix elements of Vhfs are determined by the

product of an electronic part and a part associated with the nuclear magnetic

moment. The latter may be taken as diagonal in the nuclear spin, because the

nuclear levels are usually well separated in comparison with the electronic states.

As seen in Eq. (11), there are two separate terms ofVhfs that are distinguished

by their tensorial structures, namely the orbital magnetic terms that represent the

orbital moment at the nucleus caused by the electrons of the open shell,

h1
hfs ¼ r�3

X
q

Lð1Þq ; ð13Þ
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and the spin dipolar interaction between the nucleus and the spin of the open shell

electrons,

h2
hfs ¼ r�3

D
‘kCð2Þk‘0

E
W ð12Þ1ð‘‘0Þ: ð14Þ

The parity requirements eliminate the second-order contributions that

originate from the magnetic hyperfine interactions, and all terms associated

with m in Eq. (5) vanish. Therefore in the particular case of these interactions

the first nonvanishing contributions to the transition amplitude are of the third

order. This means that no competition for the Judd–Ofelt effective operators

arises from the interactions via Vhfs.

The evaluation of the matrix elements of the first part of the hyperfine

interactions requires special attention. The operator L(1) has nonzero matrix

elements only for the states of the same configuration, as in the case of the

orbital part of the magnetic dipole operator. However, because in hhfs
1 this

angular momentum operator is multiplied by the radial part, it is possible to

evaluate its off-diagonal elements. This is possible in the case of two configur-

ations that differ from each other only by the principal quantum numbers of

two occupied one electron states (which are of the same symmetry determined

by the same angular momentum quantum numbers). In the particular case of

the 4f N configuration, the nonzero impact caused by the perturbing influence

of single excitations 4f N21n0f, for all n0 � 5 taken into account via hhfs
1 is

expected.

In the terms of unit tensor operators, hhfs
1 is defined in the following way,

h1
hfs )

D
4f jr�3jn0f

E D
fk‘ð1Þkf

E
uð1Þq ðnf ; n

0f Þ; ð15Þ

and the third-order correction, its electronic part, is determined by the operator

that results from the contraction of operators in the sequence

4f NCf ju
ð1Þ
q ð4f ; n

00f Þuð1Þr ðn
00f ; n0‘0ÞuðtÞp ðn

0‘0; 4f Þj4f NCi

D E
: ð16Þ

In addition to the sequence of operators in Eq. (16), there is an additional

term contributing to the transition amplitude, which is defined by a similar

triple product of matrix elements but with the positions of uq
(1) and up

(t)

interchanged.

Adopting the assumption of the Judd–Ofelt theory about the relative

degeneracy of the energy levels of various configurations, it is possible to

perform the partial closure over all the quantum numbers that identify the

energy states except the principal quantum numbers of the one electron

excited states. This means that the creation and annihilation operators repre-

senting appropriate tensor operators are contracted to result in the effective

operator that acts within the 4f N configuration.
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Taking into account both terms of the third order, the contribution to the

transition amplitude is determined by the effective operator

3Gh1
hfs
ðh1DVCF þ VCFDh

1Þ

¼
X
kq

X
tp

ð�1ÞqBt
p

Xeven
‘0

@tð4f �! ‘0Þjrj@�3ð4f �! f Þ
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þð2‘þ 1Þ

p
‘kCðtÞk‘0
� 	

‘0kCð1Þk‘
� 	

X
lm

ð�1Þlþp½l� X1t1
qprðlm; ‘

0‘Þ þ Xt11
pqrðlm; ‘

0‘Þ

 �

UðlÞm ð‘‘Þ; ð17Þ

where r denotes the components of the electric dipole radiation operator (the

polarization), and in the particular case of n‘N ; 4f N, the numerical factor in

front of the reduced matrix elements of spherical tensors has the value of

2
ffiffiffiffiffi
21
p

. In general the collection of angular momentum coupling coefficients

is defined as follows,

Xk1 k2 k3
q1q2q3
ðlm; ‘0‘00Þ ¼

X
xs

½x�
k1 k3 x

q1 q3 �s

� �
x k2 l

s q2 �m

� �

k3 x k1

‘ ‘0 ‘00

� �
k2 l x

‘ ‘00 ‘

� �
: ð18Þ

Using the standard rules of coupling and recoupling of the angular momenta,

it is straightforward to express the coefficients collected in Eq. (18) by the

following expression

Xk1 k2 k3

q1q2q3
ðlm; ‘0‘00Þ ¼ ð�1Þk2þq2þk3þq3

X
yh

½y�
k1 k2 y

q1 q2 h

� �

k2 ‘00 ‘

k1 ‘0 ‘

y k3 l

8><
>:

9>=
>;: ð19Þ

It is seen, however, that this manipulation does not introduce noticeable

simplification of the expression. Instead of the summation over x in Eq.

(18), now there is a summation over all possibilities of y that are determined

by the triangular conditions of the 3 2 j and 9– j symbols.

It is interesting to note that the radial integrals of Eq. (17) are determined

by the perturbed functions that have already been introduced previously.

Indeed, @ t is the function of the Judd–Ofelt theory (see the radial integral

in Eq. (9), and @23 was introduced when the perturbing influence of the

spin-orbit interaction upon the transition amplitude was analyzed. At the

same time, the tensorial structure of the effective operators in Eq. (17) demon-

strates that these third-order contributions contain the odd part of the crystal
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field potential, similarly as the second-order Judd–Ofelt terms. Indeed, if ‘0 is
even, it follows from the reduced matrix elements of the spherical tensors that

the rank of the crystal field potential operators t is limited to its odd values.

The third-order terms arising from the second part of Vhfs are determined

also by two triple products of the matrix elements, namely

VCFD
ð1Þh2

hfs and h2
hfsD

ð1ÞVCF : ð20Þ

For example, in the case of the first sequence of operators

3Gh2
hfs
ðVDh2Þ ¼ 4f NCf jVCFjXx

� 	
XxjDð1ÞjYy
� 	�

Yyjh2
hfsj4f

NCi

	
; ð21Þ

where X and Y denote the singly excited configurations of appropriate parity,

the third order expression contains:

Radial integrals with the energy denominators,X
n0

X
n00

4f jrtjn0‘0
� 	

n0‘0jr1jn00‘00
� 	

n00‘00jr�3j4f
� 	

=DEn0‘0DEn00‘00 ; ð22Þ

Angular factors,

Ctð‘0‘00Þ ¼ fkCðtÞk‘0
� 	

‘0kCð1Þk‘00
� 	

‘00kCð2Þkf
� 	

; ð23Þ

And finally, the intershell unit tensor operators that have to be contracted

to give an effective operator that acts within the 4f N shell,

4f NCf jw
ð0tÞtð4f ; n0‘0Þwð01Þ1ðn0‘0; n00‘00Þwð12Þ1ðn00‘00; 4f Þj4f NCi

� 	
; ð24Þ

where the spin in the arguments of the double tensor operators is omitted

because it is obvious that in general, they act within the spin orbital space.

For the second term of Eq. (20), the order of operators is different, and one

may expect a different final effective operator as a result of different coupling

schemes applied in both cases. The coupling of the operators in Eq. (24) (or

contraction, if each tensor operator is interpreted as a pair of creation and

annihilation operators) is performed in the accordance with the general com-

mutation relation of double tensor operators presented in Eq. (6) of Ref. 13.

The final result is of the following form

3Gh2
hfs
ðh2DV þ VDh2Þ

¼
ffiffiffi
3
p X

‘0

X
‘00

Xodd
tp

Bt
p

�
@tð4f �! ‘0Þjrj@�3ð4f �! ‘00Þ

�
Ctð‘0‘00Þ

X
q

ð�1Þq
X
y

X
l;m

½y�½l�1=2
X
x;s

ð�1Þx½x�
t 1 x

p r �s

� �
x 1 l

s q �m

� �

ð�1Þlþyþ1Alty
x ð‘‘

0‘00Þ þ Blty
x ð‘‘

0‘00Þ
� 


W ð1yÞlm ðs‘; s‘Þ; ð25Þ
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where Ct is defined in Eq. (23), and as expected, there are two different angular

factors resulting from each coupling scheme, namely

Alty
x ð‘‘

0‘00Þ ¼
X
z

½z�
1 z 2

‘ ‘00 ‘0

� �
t y z

‘ ‘0 ‘

� � 1 z 2

l y 1

x t 1

8<
:

9=
;; ð26Þ

which, in fact, after performing the summation is expressed by 12 2 j symbol

¼ ð�1Þy
‘00 2 1 t

‘ 1 x ‘0

‘ y l 1

8<
:

9=
;:

The second angular factor is defined as follows,

Blty
x ð‘‘

0‘00Þ ¼
1 x t

‘ ‘0 ‘00

� �
2 y x

‘ ‘00 ‘

� �
2 1 1

l y x

� �
: ð27Þ

However, when the 3 2 j symbols in Eq. (25) and Bx
lty(‘‘0‘00) are summed over

x, and s, instead of all those terms dependent on x, similarly as in the previous

case, the 12 2 j symbol is obtained. Thus the whole angular part of this

effective operator has the form

�
X
z;z

½z�ð�1Þzþyþpþl�m
t 1 z

p q �z

� �
z 1 l

z r �m

� �

1 t ‘ y

z ‘0 ‘ 1

l 1 ‘00 2

8><
>:

9>=
>;:

Note the interchange of the components q and r in the 3 2 j symbols in com-

parison with those in Eq. (25). The symmetry properties of the 12 2 j

symbols[21] indicate that these two coefficients are the same, and therefore

finally the third-order effective operator originated from the interactions hhfs
2

has a much simpler form

3Gh2
hfs
ðh2DV þVDh2Þ ¼

ffiffiffi
3
p X

‘0

X
‘00

Xodd
tp

Bt
p @

tð4f �! ‘0Þjrj@�3ð4f �! ‘00Þ
� 	

Ctð‘0‘00Þ
X
q

ð�1Þq
X
y

X
l;m

½y�½l�1=2
X
x;s

ð�1Þxþlþ1
½x�

t 1 x

p r �s

� �
x 1 l

s q �m

� �
þ ð�1Þyþ1 t 1 x

p q �s

� �
x 1 l

s r �m

� �� �

‘00 2 1 t

‘ 1 x ‘0

‘ y l 1

8><
>:

9>=
>;W ð1yÞlm ðs‘; s‘Þ: ð28Þ
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If r ¼ q (the components of the electric dipole radiation operator, which deter-

mines the polarization is equal to the component of the magnetic nuclear

hyperfine interaction), the third-order contribution vanishes unless y is odd.

The same condition has to be satisfied for r = q, because the four possibilities

of the products of the 3 2 j symbols for r,q ¼ + 1 have the same values but

differ by signs in pairs. Thus, the intershell contribution due to hhfs
2 has the final

form

3Gh2
hfs
ðh2DV þVDh2Þ ¼ 2

ffiffiffi
3
p X

‘0

X
‘00

Xodd
tp

Bt
p @

tð4f �! ‘0Þjrj@�3ð4f �! ‘00Þ
� 	

Ctð‘0‘00Þ
X
q

ð�1Þq
Xodd
y

Xeven
l;m

½y�½l�1=2
X
x;s

ð�1Þxþ1
½x�

t 1 x

p r �s

� �
x 1 l

s q �m

� � ‘00 2 1 t

‘ 1 x ‘0

‘ y l 1

8><
>:

9>=
>;

W ð1yÞlm ðs‘; s‘Þ ð29Þ

with ‘ ; f (¼3) for the lanthanides.

At the same time, if y ¼ odd and the Hermiticity of the double tensor

operators is required (especially in the case when they contribute to the line

strength rather than to the transition amplitude), this limitation implies that

the final rank l ¼ even. This means that the terms associated with the

scalar double tensor operator, for l ¼ 0, which requires y ¼ 1, exist. This par-

ticular case creates the possibility for a non-relativistic description of highly

forbidden transitions 0! 0 observed in Eu3þ ion in various materials. This

aspect of new selection rules that are introduced to the theory via the

nuclear magnetic hyperfine interactions is of special importance for investi-

gations devoted to the new parameterization schemes of f-spectra. Indeed,

there is a search for such physical mechanisms that are important not only

in the sense of the magnitude of the modification of the transition amplitude

they cause, but also because of their role in relaxing the standard selection

rules. At the same time, this detailed analysis provides deeper insight into

the nature of the f$ f transitions. Indeed, already at this point it is possible

to conclude that the unusual 0$ 0 transitions, whose description and repro-

duction by the theory for many years is a challenge for many researchers,

belong to the group of the hyperfine induced transitions in the strict sense

of this categorization.

The parity requirements for the nonvanishing reduced matrix elements of

the spherical tensors in Ct defined in Eq. (23) indicate that ‘00 is odd. This

means that ‘0 has to be even, which leads to the conclusion that t in the

expansion of the crystal field potential is odd. In summary, it is seen from

Eq. (29) that the third-order nuclear magnetic hyperfine terms include the

Hyperfine-Induced f$ f Transitions 305

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
5
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



interactions between the configurations 4f N–4f N21n0d; n0g via the odd part of

VCF, and 4f N–4f N21n00p; n00f via hhfs
2 . These contributions are defined for all

the values of the principal quantum numbers of excited one electron

functions, including the continuum part of the set for a given symmetry.

Indeed, because the radial integrals of Eq. (29) are defined in the terms of

the perturbed functions, the complete radial basis sets of one electron

excited states are taken into account. In fact, it is interesting to note that the

perturbed functions in Eq. (29) again are not new in the intensity theory,

because @t is the function that defines the Judd–Ofelt radial integral in Eq.

(9), and as mentioned before, @23 has been introduced previously in the dis-

cussion of the perturbing influence of the spin-orbit interaction upon the tran-

sition amplitude. Note also that the radial integral of the effective operator in

Eq. (17) is a particular case of the radial term of Eq. (29) for ‘00 ; f.

The effective operators contributing to the transition amplitude defined in

Eq. (29) are new. They are expressed by double tensor operators that act

within the spin-orbital space and therefore are beyond the framework of the

standard formulation of Judd and Ofelt. In fact, they are of the same nature

as the effectively relativistic effective operators introduced into the f$ f tran-

sition theory in Ref. 13. Thus, it is concluded that only the one-particle rela-

tivistic parameterization scheme of f-spectra, which is based on the double

tensor operators, includes the subtle nuclear magnetic hyperfine interactions

when the fitting procedure is applied. Consequently, it is possible now to

understand better the problems with the reproduction of some transitions

within the standard parameterization, which while working very well for the

majority of cases, is unable to describe all observations. The details of new

parameterization scheme of the f-spectra are beyond the scope of the

current investigations, and they are discussed in a separate analysis which is

in preparation.

ELECTRIC MULTIPOLE HYPERFINE INTERACTIONS

The distortion from the spherical symmetry of a nucleus with the spin I . 0 is

described by the electrostatic interactions between the electron and nucleon

charge densities, which, in the terms of the multipole expansion, have the

following tensorial form,

VEM ¼
X
k

rkn
rkþ1
e

CðkÞe � C
ðkÞ
n

� �
: ð30Þ

For energy considerations, especially those performed within the single con-

figuration approximation, k in the expansion above is even, and the

remaining contributions for k odd vanish. In the current discussion the inter-

shell electric multipole hyperfine interactions are analyzed, and therefore it

is possible that for k odd in Eq. (30) there are nonzero contributions to the
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transition amplitude. The analysis becomes simpler by separating the nuclear

and electronic coordinates and by expressing the wave functions in the scheme

of the uncoupled electron angular and nuclear spin momenta. As a conse-

quence, it is possible to define the nuclear multipole moments in a general

way as matrix elements

Mk
qðIÞ ¼ IjrknC

ðkÞ
q;njI

D E
; ð31Þ

and focus on the electron part of the new term contributing to the transition

amplitude.

The possibility of k ¼ odd in the expansion of the VEM is utilized here to

derive new contributions to the transition amplitude that are of the second

order and that compete with the standard Judd–Ofelt terms, as mentioned

above. The second-order terms proportional to m in Eq. (5) with V ; VEM

for k ¼ odd (in particular k ¼ 1 for the dipole interactions) satisfy the parity

requirements for the nonvanishing matrix elements of electric dipole transition

operator. This is due to the fact that the first-order correction C01 originating

from the odd part of VEM is of opposite parity in relation to the parity of the

energy states of 4f N.

For the first time then, it is possible to analyze the second-order terms

contributing to the transition amplitude that are of different physical origin

from the crystal field potential. Within the framework of the basic assumptions

and approximations of the standard Judd–Ofelt theory, it is straightforward to

find that these new one-particle effective operators have the following form

2GEM ¼ 2ð�1Þr
Xodd
k;q

Mk
qðIÞ

Xeven
‘0

Xeven
l

½l�1=2 1 k l

r q �ðrþ qÞ

� �

Al
k ð‘
0ÞR�k�1

JO ð‘0Þ 4f NC0
f jU
ðlÞ
m ð‘‘Þj4f

NC0
i

D E
ð32Þ

where the angular factors are defined by Eq. (8), and the radial integral is

presented in Eq. (9).

The similarity of these effective operators to those of the standard Judd–

Ofelt theory from Eq. (7) is striking. There are the same angular factors, the

same radial integrals, the same even-rank unit tensor operators U. Only the

physical origin in both cases is different. Although the odd rank crystal field

parameters Bp
t of Eq. (7) are replaced in Eq. (32) by the matrix element of

nuclear dipole moment Mq
1, the selection rules for the nonvanishing contri-

butions are the same in both cases.

The second-order Judd–Ofelt effective operators represent the electro-

static interactions caused by the distortion of the spherical symmetry of a

free ion by its environment represented by the crystal field potential. Here,

the new second-order terms originate from the electrostatic interactions that

are the consequence of the distortion of a spherical symmetry of a nucleus

caused by its closest environment created by the surrounding electrons. It is
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possible then to conclude, that in addition to the crystal field potential, also the

electric dipole hyperfine interactions are the forcing mechanism of electric

dipole the f$ f transitions. In both cases, the distortion of the spherical

symmetry plays a crucial role in the theoretical description of the observed

spectroscopic properties of f-electron systems.

Because l in Eq. (32) is even, the perturbing influence of the electric

hyperfine interactions upon the amplitude of the f$ f transitions is

included by the standard Judd–Ofelt intensity parameters Vl when they are

determined through the fitting procedure. Especially in the case for l ¼ 2 it

is interesting to note that the new terms introduced here contribute to the

effective operators associated with U(2); this is the very term that determines

the amplitude of the hypersensitive transitions. The hypersensitivity of some

electric dipole transitions to the environment is manifested by unusual

changes of the values of the intensity parameters, usually V2, observed for

various systems. This suggests that within the standard approach, the hyper-

sensitivity is reproduced theoretically by the terms that are associated with

the rank t ¼ 1 of the crystal field potential. However, the unexpected values

of V2, that for some cases are even negative, which is in contradiction to

their definition, are also observed in the case of systems with symmetry

without the terms with t ¼ 1 in the expansion of the crystal field potential.

The new terms defined in Eq. (32) are independent of the crystallographic

symmetry of the system, and therefore they do contribute to the transition

amplitude, in particular to its part associated with U(2), regardless of it.

Thus, it is concluded that the electric dipole hyperfine interactions are

responsible for the hypersensitivity of some electric dipole transitions

observed in various materials. Obviously, it is impossible to establish the

relative importance of these new contributions without numerical calculations.

However, for all the cases for which the crystal field potential does not contain

the terms with t ¼ 1, the new effective operators of Eq. (32), for k ¼ 1, are the

only contributions to the transition amplitude dominated by U(2).

The third-order contributions originating from the interplay of the crystal

field potential and electric multipole hyperfine interactions have a standard

tensorial structure, namely

3GEMðVEMDVCF þ VCFDVEMÞ

¼
X
kq

X
tp

ð�1ÞqBt
pM

k
qðIÞ

X
‘0‘00

�
@�k�1ð4f �! ‘0Þjrj@tð4f �! ‘00Þ

�

‘kCðkÞk‘0
� 	

‘0kCð1Þk‘00
� 	

‘00kCðtÞk‘
� 	

X
lm

ð�1Þlþp½l� Xkt1
qprðlm; ‘

0‘00Þ þ ð�1Þk�pXtk1
pqrðlm; ‘

00‘0Þ

 �

UðlÞm ð‘‘Þ;

ð33Þ
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where the collection of angular momentum coupling coefficients for each

sequence of operators is defined by Eq. (18) (or by Eq. (19), because they

are the same factors as in the case of the effective operators caused by hhfs
1 .

The effective operators defined in Eq. (33) contain the impact of both

parts of the crystal field potential, even and odd, which is assisted by dipole

and quadrupole hyperfine interactions, respectively. From the reduced

matrix elements of the spherical tensors in Eq. (33), it is apparent that the

parity of t is opposite to the parity of k. This makes it possible for the first

time to evaluate directly the contributions to the transition amplitude caused

by the terms for t ¼ even. Because the even part of the crystal field

potential contributes to the energy, in most cases it is straightforward to

determine the even rank crystal field parameters applying the fitting

procedure (assuming that the experimental data are rich enough to perform

reproduction of the measurements). The values of such parameters are then

used to evaluate, in accordance with Eq. (33), a particular part of the transition

amplitude. Unfortunately, such a direct calculation of the transition

amplitude is impossible in the case for the odd rank crystal field parameters,

because they do not contribute to the energy. Therefore, in order to compare

various contributions with t ¼ odd in Eq. (33), the numerical analysis is

based on the discussion of the magnitude of crystal-structure-independent

terms.

At the same time, there are no limitations or any requirements for the parity

of the final rank of the effective operator l in Eq. (33). This means that there are

contributions associated with the even ranks 2, 4, 6, as in the standard formulation

of the Judd–Ofelt theory, and in addition, there are terms with l ¼ odd. These

latter are beyond the standard selection rules, and their presence gives the first

chance for a direct theoretical description of the unusual transitions such as the

transition 0$ 1 observed in Euþ3 ion in various hosts.

INTRA-Q-SHELL INTERACTIONS

The intra-Q-shell interactions via any perturbing operator are beyond the

concept of admixing to the wave functions of the ground configuration new

components that contribute to the transition amplitude, as utilized in the

standard Judd–Ofelt theory. For the completeness of the presentation,

however, the remaining third-order terms caused by the intra-Q-shell inter-

actions are introduced here. They are determined by the matrix elements

that contain the first-order corrections to the wave functions that are due to

both perturbations taken into account simultaneously,

lm C0
f jD
ð1ÞjC

ð11Þ
i

D E
þ C

ð11Þ
f jD

ð1ÞjC0
i

D E
 �
: ð34Þ

Ci
(11) is the correction to the wave function of the lowest order among those

that are quintessential for the double perturbation theory. As a consequence
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of the equation that this function has to satisfy, its definition contains the first-

order corrections associated with l and m separately,

C
ð11Þ
i ¼

X
Yy

YyjVCFjC
ð01Þ
i

D E
ðE0

i � E0
YyÞ
þ

YyjV jC
ð10Þ
i

D E
ðE0

i � E0
YyÞ

8<
:

9=
;jYyl; ð35Þ

where Ci
(10) is defined in Eq. (6), and Ci

(01) is expressed in the same manner,

but with VCF replaced by the second perturbation operator.

The intra-Q-shell interactions taken into account at the third order are

determined by the perturbing expression

3GV ¼
X
Xx

X
Yy

4f NC0
f jD
ð1ÞjYy

D ED
YyjQVQjXx

ED
XxjVCFj4f

NC0
i

E
ðE0

i � E0
YyÞðE

0
i � E0

XxÞ

8<
:

þ
4f NC0

f jVCFjXx
D ED

XxjQVQjYy
ED
YyjDð1Þj4f NC0

i

E
ðE0

f � E0
YyÞðE

0
f � E0

XxÞ

9=
;; ð36Þ

where, as before, a specific choice of the second perturbation V has to be made.

In the case of the intra-Q-shell interactions via hhfs
1 , using the same defi-

nition and adopting the same contraction rules as previously, the effective

operator is simplified to the form

3Gh1
hfs
ðDh1VCF þ VCFh

1DÞ ¼
X
tp

Bt
p

Xeven
‘0

X
‘00

dð‘00; ‘0Þ

D
@tð4f �! ‘0Þjrj@�3ð4f �! ‘0Þ

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘0ð‘0 þ 1Þð2‘0 þ 1Þ

p
‘kCðtÞk‘0
� 	

‘0kCð1Þk‘
� 	

X
lm

ð�1Þlþr½l� Xt11
prqðlm; ‘

0‘0Þ þ X1t1
rpqðlm; ‘

0‘0Þ

 �

UðlÞm ð‘‘Þ: ð37Þ

These are the third-order contributions that originate from the off-diagonal

configuration interaction between 4f N21n0‘0 and 4f N21n00‘0 for ‘0 ¼ even

(;d,g) and for n0 = n00. The diagonal terms, for n0 ¼ n00 are more complex

and in order to derive their effective operator version some additional approxi-

mations, have to be introduced. With the assistance of further approximations,

it is also possible to include the whole impact of the nuclear magnetic

hyperfine interactions and use the measured value of the magnetic hyperfine

structure constant. However, such an approach would not provide new

information about the nature and sensitivity of the f$ f transitions to these

subtle interactions.

Inserting hhfs
2 into Eq. (36) results in new effective operators of the third-

order. In this particular case, all the operators in Eq. (36) have to be expressed
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by the double tensor operators, as in the case of the intershell interactions. For

example, for the sequence of the matrix elements Vh2D, the final effective

operator has the form, which is very similar to the intershell interactions

defined in Eq. (29), namely

3Gh2
hfs
ðh2DV þ VDh2Þ ¼

1

2

ffiffiffi
3
p X

‘0

X
‘00

Xodd
tp

Bt
p

@tð4f �! ‘0Þjr�3j@1ð4f �! ‘00Þ
D E
D
‘kCðtÞk‘0

E
‘0kCð2Þk‘00
D ED

‘00kCð1Þk‘
E

X
q

Xodd
y

Xeven
l;m

½y�½l�1=2
X
x;s

ð�1Þxþyþtþl�m½x�

1 1 x

r q �s

� �
t x l

p s �mr

� � ‘ y 1 2

‘ l 1 ‘00

‘0 t x 1

8><
>:

9>=
>;

W ð1yÞlm ðs‘; s‘Þ ð38Þ

As seen from this example, the effective operators that represent the intrashell

interactions have a similar tensorial structure to those that include the inter-

shell interactions. In general, it is concluded that taking formally all

possible sequences of operators in triple products of matrix elements

(without their physical meaning), the final structure of the derived effective

operators contain all permutations of the indices that identify the angular coef-

ficients. This is exactly what is observed when comparing the structures of the

intra- and intershell interactions taken into consideration via nuclear magnetic

interactions Vhfs. The same conclusion is derived from the analysis of the

effective operators with the intrashell interactions included via the electric

multipole hyperfine interactions VEM. Indeed, the set of the effective

operators presented in Eq. (33) is completed by the additional objects associ-

ated with the unit tensor operator U(l) multiplied by the radial integrals with

all possible assignments of the ranks of the perturbed functions and powers of

the radial coordinate. The angular factors of these operators are determined by

Xk1k2k2
q1q2q3

defined in Eq. (18) (or Eq. (19)), for all assignments of (k1, k2, k3) ¼ (k,

t, 1), with the adjusted order of their components q, p, r.

Thus, in general the intrashell interactions do not provide effective

operators that would change the selection rules for the nonvanishing

contributions to the transition amplitude established at the third-order

analysis of the objects representing the intershell interactions of various

physical origins.
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CONCLUSIONS

To summarize this general analysis devoted to new contributions to the

transition amplitude that are caused by the hyperfine interactions, it is

useful to look at the presented effective operators in a general way, as at

objects that all are defined within the spin-orbital space. To transform an

orbital tensor operator to such a form, it is enough to remember that each

unit tensor operator u(k) within the accuracy of factor of
ffiffiffi
2
p

may be

replaced by a double tensor operator w(0k)k, which acts as a scalar within

the spin space (with a rank k ¼ 0), and an original tensor of rank k in the

orbital part.

Thus

1. W(0l)l with l ¼ even represent all the physical mechanisms that are

described by the standard parameterization based on the Judd–Ofelt

theory implemented by the third-order electron correlation contributions;

as demonstrated here, these effective operators contain in addition to

the crystal field potential and electron correlation also the impact of

electric multipole (dipole and quadrupole in particular) hyperfine

interactions determined by Eq. (32), at the second-, and by Eq. (33) at

the third-order;

2. W(0l)l with l ¼ odd introduced in Eq. (24) represent third-order terms

that originate from the electric multipole hyperfine interactions; they

are beyond the standard parameterization scheme;

3. W(1k)l with l ¼ even and odd represent all interactions within the spin-

orbital space, and in particular they include the nuclear magnetic

hyperfine interactions that are represented by the third-order effective

operators defined in Eq. (29); these terms are also beyond the standard

parameterization scheme.

Inspection of the tensorial structure of all effective operators presented here

does not provide any information about their relative importance in the

description of the electric dipole transitions. There is neither a priori infor-

mation nor rules established how to measure the importance of certain

expressions. In each case, the numerical calculations have to be performed

for a given system to verify the hierarchy of various effects. Because the

contributions to the transition amplitude are discussed here and not the

corrections to the energy, it is even impossible to expect that for example

the third-order terms should be smaller than those of the second order.

Obviously, this would be the case for the energy and its convergent series

of corrections, assuming that the partitioning of the Hamiltonian is properly

performed.

The results of the current discussion demonstrate that there is a physical

evidence for the validity of the scheme of parameterization of f-spectra

extended to the form introduced within the relativistic approach in Refs. 13
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and 14. Thus it is suggested that the standard intensity parameters Vl of the

Judd–Ofelt scheme

S f �i ¼
X

l¼2;4;6

Vlj Cf kU
ðlÞkCi

� 	
j2

are replaced by the set of new parameters

S f �i ¼
X
l

X
kk

Vkk
l j Cf jW

ðkkÞljCi

� 	
j2

There is a demand for such a modification of the standard scheme, and the best

examples of this are the difficulties in the description of the unusual transitions

0$ 0 and 0$ 1 observed in Euþ3 ion. In the particular case of these tran-

sitions, it is not only important to be able to describe them theoretically

because of purely scientific challenge of basic research. The demand for

new parameterization that is also applicable for these particular transitions

is reinforced by their importance when used as spectroscopic tools for the

structural recognition of various isomers of tissue selective organic chelates,

as described for example in Ref. 22.

Of special importance for the understanding of the nature of the f$ f

transitions is the conclusion that the primacy of the crystal field potential as

the forcing mechanism of the standard Judd–Ofelt theory is terminated by

the presence of a new physical mechanism, which directly contributes to the

transition amplitude at the second order. As mentioned above, VEM for

k ¼ odd in its multipole expansion of Eq. (30) takes over the role that is

played by the odd part of the crystal field in the standard model and gives

rise to a new approach for the theoretical description of the spectroscopic

properties of the lanthanides in crystals. As a consequence, those transitions

regarded as forced by the crystal field are in their nature induced by

hyperfine interactions. This conclusion has a serious impact also upon the

description of the parity forbidden electric dipole transitions in free atomic/
ionic systems. The distortion of the spherical symmetry of the nucleus by

the surrounding electrons of the open shell gives rise to new (and the only)

contributions to the transition amplitude of a free system; in such cases, the

important role of these interactions cannot be overestimated. Only for ions

in crystals when the second order contributions of two various origins

compete is a numerical analysis necessary to find their relative importance.

Unfortunately, it is impossible to estimate the relative magnitude of

various contributions via the inspection of their tensorial structure, as there

is no a priori information available about the hierarchy of various terms con-

tributing to the transition amplitude. In the case of the analysis of energy, and

its calculation, it is expected that, if the Hamiltonian is properly partitioned,

the energy corrections of various orders form a convergent series. This

means that obviously the third-order corrections to the energy are smaller

than the second-order terms, for example. The situation is different in the
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case of the so-called properties where, not the corrections (that are reserved for

the energy only), but the contributions of various orders are analyzed. The

results of ab initio calculations performed for the lanthanide series demon-

strate that the third-order contributions to the transition amplitude that

originate from the correlation effects are larger (for some ions—even

several times) than the second-order Judd–Ofelt terms. Thus in order to

find the relative importance of various terms contributing to the transition

amplitude, direct calculations have to be performed (not semiempirical!).

Inspection of various terms presented here shows that such a numerical

procedure requires special programs (the radial integrals have to be calculated,

and not treated as parameters), knowledge of the crystal structure of the

materials (and unfortunately the odd rank crystal field parameters are

unknown, and it is impossible to evaluate them even through the fitting

procedure); such a task requires additional approximations and an extended

scheme of numerical analysis.

The numerical illustration of conclusions presented here is in preparation.

As demonstrated, the hyperfine interactions indeed induce the electric

dipole f$ f transitions as predicted by Wybourne in 1962. It must be

admitted that, as mentioned at the beginning of this discussion, it took more

than 20 years to observe this property experimentally by Popova and her col-

laborators, and it took more than 40 years to verify it theoretically. In fact, not

the lack of interest but the complexity of both experimental and theoretical

investigations were the reasons that the field developed in a way that so

much time separated the distinct steps of its advancements.
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